MULTIPLE q-SHELL ODF RECONSTRUCTION IN q-BALL IMAGING By

نویسندگان

  • Iman Aganj
  • Christophe Lenglet
  • Guillermo Sapiro
  • Essa Yacoub
  • Kamil Ugurbil
  • Noam Harel
چکیده

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume element along the ray, thereby resulting in distributions different from the true ODFs. A new technique has been recently proposed that, by considering the solid angle factor, uses the mathematically correct definition of the ODF and results in a dimensionless and normalized ODF expression from a single q-shell. In this paper, we extend this technique in order to exploit HARDI data from multiple q-shells. We consider the more flexible multiexponential model for the diffusion signal, and show how to efficiently compute the ODFs in constant solid angle. We describe our method and demonstrate its improved performance on both artificial and real HARDI data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Q-Shell ODF Reconstruction in Q-Ball Imaging

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume eleme...

متن کامل

RECONSTRUCTION OF THE ORIENTATION DISTRIBUTION FUNCTION IN SINGLE AND MULTIPLE SHELL Q-BALL IMAGING WITHIN CONSTANT SOLID ANGLE By

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball data uses linear radial projection, neglecting the change in the volume ...

متن کامل

ACCURATE ODF RECONSTRUCTION IN Q-BALL IMAGING By

Introduction: Q-ball imaging (Tuch 2004) is a high angular resolution diffusion MR imaging technique proven successful in resolving multiple intravoxel fiber orientations. Standard computations of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball use radial projections and do not consider the solid angle, resulting in distributions differ...

متن کامل

A linear and regularized ODF estimation algorithm to recover multiple fibers in Q-Ball imaging

Due the well-known limitations of diffusion tensor imaging (DTI), high angular resolution diffusion imaging is currently of great interest to characterize voxels containing multiple fiber crossings. In particular, Q-ball imaging (QBI) is now a popular reconstruction method to obtain the orientation distribution function (ODF) of these multiple fiber distributions. The latter captures all import...

متن کامل

Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis.

Diffusion tensor imaging (DTI) accurately delineates white matter pathways when the Gaussian model of diffusion is valid. However, DTI yields erroneous results when diffusion takes on a more complex distribution, as is the case in the brain when fiber tracts cross. High angular resolution diffusion imaging (HARDI) overcomes this limitation of DTI by more fully characterizing the angular depende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009